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Abstract

Fish/seafood consumption is a source of mercury; other dietary sources are not well described. 

This cross-sectional study used National Health and Nutrition Examination Survey (NHANES) 

2011–2012 data. Participants self-reported consuming fish/seafood (N=5427) or not (N=1770) 

within the past 30 days. Whole blood total mercury (THg), methylmercury (MeHg) and urinary 

mercury (UHg) were determined. Diet was assessed using 24-hour recall. Adjusted regression 

models predicted mercury biomarker concentrations with recent food consumption while 

controlling for age, sex, education, and race/ethnicity. Geometric mean THg was 0.89 μg/L (95% 

confidence interval (CI): 0.78, 1.02) (seafood consumers) and 0.31 μg/L (95% CI: 0.28, 0.34) 

(non-seafood consumers); MeHg and UHg concentrations follow similar patterns. In adjusted 

regressions among seafood consumers, significant associations were observed between mercury 

biomarkers with multiple foods, including fish/seafood, wine, rice, vegetables/vegetable oil, liquor 

and beans/nuts/soy. Among non-seafood consumers, higher THg was significantly associated with 

mixed rice dishes, vegetables/vegetable oil, liquor and approached statistical significance with 

wine (p<0.10); higher MeHg was significantly associated with wine and higher UHg was 

significantly associated with mixed rice dishes. Fish/seafood consumption is the strongest dietary 

predictor of mercury biomarker concentrations; however, consumption of wine, rice, vegetables/

vegetable oil, or liquor may also contribute, especially among non-seafood consumers.
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Introduction

The World Health Organization (WHO) has identified mercury as one of top ten chemicals 

of public health concern (1). Numerous reports suggest that exposure to mercury poses a 

significant threat to human health because mercury is toxic to multiple organ systems 

including the nervous, renal, respiratory, immune, and cardiovascular systems (2–4). There 

are different chemical forms of mercury (elemental, inorganic, and organic): the most 

common form of mercury that humans are exposed to is methylmercury, a form of organic 

mercury. The different chemical forms of mercury are recognized to have different typical 

routes of exposure and toxicological impact, as described in more detail below.

The nervous system and renal system are the primary targets of chronic exposure to 

elemental mercury and/or inorganic mercury (5,6). Neurotoxicity is also a major concern of 

methylmercury exposure (7–9). Moreover, the developing nervous system is more sensitive 

to the neurotoxicity of methylmercury than the mature nervous system (10,11). Therefore, 

exposure to methylmercury, especially among pregnant women and infants and children, is a 

major concern (12,13). Additional noted health effects of methylmercury exposure include 

cardiovascular (14–16) and immune system toxicity (17).

Human exposure to mercury is the result of a complex global patterns of environmental 

release, fate, and transport (18). Workers in industrial operations or mining (either formal or 

informal/artisanal) operations may be exposed to elemental or inorganic mercury (19–21). 

Elemental mercury is used in dental amalgams, which has been traced to exposure among 

dentists (22) and persons with dental fillings (23–25). Mercury exposure has been identified 

from use of inorganic mercury-containing consumer products, such as skin lightening cream 

(26) or herbal medicines (27). Numerous studies support the observation that the majority of 

mercury exposure in humans occurs via consumption of methylmercury via fish or seafood 

(12,28).

An increasing amount of research suggests that human exposure to total mercury or 

methylmercury may occur via consumption of items other than fish or seafood. Several 

studies in China (29–32) and one in the United States (33) suggest rice consumption may be 

associated with methyl or total mercury exposure. Baby rice cereals and other rice-

containing baby products also contain methylmercury (34). Mercury exposure may also be 

associated with consumption of vegetables (35–38), grains (35,36,39), alcoholic beverages 

(35,38,40,41), herbal tea (41), and high fructose corn syrup (42). Some studies have reported 

a negative association of blood mercury with specific foods, such as foods containing 

tomatoes, potatoes, or meats (41,43); it is possible this negative association reflects overall 

dietary patterns, i.e., that people eating tomatoes, potatoes or meats also tend to eat fewer 

foods that have high mercury content (41).

There are still unanswered questions on non-seafood dietary predictors of mercury exposure. 

Dietary patterns and source of foods vary greatly by region; thus, studies completed in one 

population may not necessarily reflect the experience of others. While there are a few 

existing studies of the United States population using National Health and Nutrition 

Examination Survey (NHANES) data (33,44), these are limited by evaluating only total 

Wells et al. Page 2

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2020 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mercury biomarkers and not incorporating methylmercury biomarkers. Although there is 

ample data suggesting that the vast majority of mercury humans are exposed to is in the 

form of methylmercury, recent work has highlighted the fact that total mercury may not 

always be a good proxy measurement for the effects of methylmercury (45). An additional 

limitation is that given the high amounts of mercury in seafood, if the population under 

study has any fish or seafood consumption, it is extremely difficult to rule out the possibility 

that the fish or seafood may confound results for other food items.

Therefore, the goal of this study is to identify foods associated with elevated total mercury in 

whole blood (THg), methylmercury in whole blood (MeHg) and urinary mercury (UHg) 

among those who report consuming fish and seafood and those who do not. UHg is a 

measure of total mercury, but unlike total mercury in blood, total mercury in urine is thought 

to reflect a much higher proportion of inorganic mercury compounds. We use NHANES data 

for this analysis because the survey is a large, representative study of the United States 

population that includes a highly detailed dietary assessment and speciated mercury 

biomarkers. Additionally, the survey determines typical seafood consumption in the month 

prior to the survey, which allows for identification of those who commonly eat fish and 

seafood versus not.

Methods

Study design and population.

This analysis uses 2011–2012 data from the United States Center for Disease Control and 

Prevention’s National Health and Nutrition Examination Survey. NHANES is a cross-

sectional study that utilizes a complex multistage probability sampling design of 

noninstitutionalized civilians in order to obtain a representative sample of the United States 

population in consecutive two-year cycles, which can be combined to increase analytical 

sample size. Selected subpopulations are oversampled in order to increase the precision of 

estimates among these subgroups. Analyses incorporated appropriate survey weights and 

utilized estimation procedures for survey samples. NHANES operates with approval from 

the National Center for Health Statistics Ethical Review Board; all participants completed a 

written informed consent process prior to participation in the study. More details about 

NHANES design and methods can be found online at www.cdc.gov/nchs/nhanes.

Data from NHANES 2011–2012 were selected for this analysis because both total and 

methylmercury data are available on the full examination sample. Prior to 2011, 

methylmercury was not included; after 2012 methylmercury was included on a 1/3 

subsample of the eligible population. Different weights are needed for a subsample 

compared to the full population; however, if different weights are combined the sample 

would not reflect a representative sample of the United States. Thus, we limited this analysis 

to 2011–2012 data. There were 9756 persons included in NHANES 2011–2012 (see 

Supplemental Figure 1). We excluded participants who did not have complete THg or MeHg 

data (N=1919), did not complete the 24-hour dietary recall (N=608), or did not complete the 

dietary questionnaire (N=32); this leaves a total of N=7197. Those who were included in 

analyses were more likely to be ≥20 years old and non-Hispanic white (data not shown). 

Participants who either reported eating fish or shellfish within the past 30 days or reported a 
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food item containing fish or seafood in their 24-hour recall were classified as seafood 

consumers (5427/7197); otherwise participants were classified as non-seafood consumers 

(1770/7197). UHg was measured on a randomly selected one-third subset of eligible 

participants; thus, analyses with UHg are conducted separately and include a smaller 

population (N=2135). Using the same criteria as above, there were 1614/2135 persons who 

were seafood consumers and 521/2135 persons who were non-seafood consumers.

Assessment of mercury biomarkers.

THg, MeHg and UHg concentrations are included in this analysis. NHANES did quantify 

whole blood inorganic mercury; however, >70% of values were below the limit of detection 

limit (LOD) and therefore blood inorganic mercury is not used in the current analysis. 

Whole blood and urine samples were collected using standard procedures by trained study 

staff. Trace-free equipment was used for collection; blood samples were stored at −30°C or 

lower. Mercury concentrations were determined in separate analytic runs using inductively 

coupled plasma mass spectrometry (LOD=0.16 μg/L [THg], 0.12 μg/L [MeHg], and 0.05 

μg/g creatinine [UHg] (46). There were 573/7197 (8.0%) and 1302/7197 (18.1%) samples < 

LOD for THg and MeHg, respectively. Within the subsample of those assessed for UHg 

there were 118/2135 (5.5%) samples < LOD. Values <LOD were replaced with LOD/√2 for 

analyses. UHg values were divided by urinary creatinine to adjust for differences in dilution, 

thus UHg is reported in μg/g creatinine.

Dietary assessment.

The dietary assessment in NHANES is conducted in collaboration with the United States 

Department of Agriculture (USDA). The in-person dietary interview is completed by a 

trained interviewer and is conducted on the same day as the blood and urine collection. A 

proxy respondent, most often a parent or guardian, completed this section for children <6 

years old; for children 6–11 years old, the child completes the section with assistance from 

the proxy respondent. The dietary assessment includes a 24-hour recall component followed 

by a questionnaire component. During the questionnaire component, participants are asked if 

they ate fish or shellfish within the past 30 days.

For the 24-hour recall component, participants are asked to report all foods eaten within the 

past 24 hours. After the initial response, interviewers ask specifically about foods that are 

frequently forgotten in initial reporting (such as beverages and snacks) and use neutral 

probing methods to obtain more details when answers are incomplete or unclear. This is 

done to increase completeness and specificity of overall responses. The United States 

Department of Agriculture (USDA) What We Eat In America (WWEIA) Survey classifies 

individual foods into approximately 150 distinct categories based on nutrient and overall 

consumption patterns within the United States. See www.ars.usda.gov/ba/bhnrc/fsrg for 

more details on these food categories. We used these categories as a starting point, and then 

further combined similar foods into a smaller number of food groups (see Supplemental 

Table 1). Our group classification was based on recommendations from WWEIA, 

knowledge of which foods have been associated with mercury biomarkers previously 

(29,35,36,38), and our own initial descriptive analyses.
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Other variables.

Data on age, sex, race/ethnicity, and education were obtained via questionnaire. Age was 

categorized for presentation of descriptive statistics (1 to 19.9 years/20 to 39.9 years/40 to 

59.9 years/≥60 years) but was included as a continuous variable in regression models. Race/

ethnicity was categorized as non-Hispanic (NH) white, NH black, Hispanic, NH Asian, or 

other race/multiracial. Education was classified as < high school, high school or equivalent, 

some college or 2-year degree, 4-year college degree or higher; persons <20 years old, 

reporting ‘don’t know’, or missing data on educational attainment were grouped into a 

separate category.

Statistical analyses.

Statistical analyses were completed using Stata 13.1 (College Station, Texas, USA); a p-

value <0.05 was considered statistically significant. This is an exploratory analysis as 

opposed to a confirmatory data analysis; therefore, any results should be verified with other 

investigations and no adjustments for multiple comparisons are included. Analytical 

procedures which incorporate the complex survey design and appropriate weights were used. 

We used Mobile Examination Center weights (MEC) for analyses with THg or MeHg as this 

represented the smallest sampling unit for these data. As UHg was assessed using a random 

1/3 subsample, analyses involving urinary mercury incorporated appropriate subsample 

weights instead of MEC weights.

All mercury biomarkers were approximately lognormally distributed; therefore, geometric 

means (95% confidence interval) are presented and natural log transformed variables are 

used in statistical analyses. The United States Environmental Protection Agency’s current 

reference dose for MeHg is based on a cord blood total mercury measurement of 5.8 μg/L 

(47). Studies have demonstrated that cord blood Hg is, on average, 1.7 times higher than 

maternal blood Hg concentrations (48); using this ratio, 5.8 μg/L in cord blood would be 

equivalent to 3.4 μg/L in maternal blood. Therefore, we created variables to indicate whether 

whole blood THg or MeHg were >5.8 or >3.4 μg/L.

Descriptive analyses include presentation of demographic characteristics and mercury 

concentrations among the total population and stratified by seafood consumption. Pearson’s 

chi-square and Wald tests from unadjusted linear regressions were used to evaluate the 

statistical significance of the variation across demographic characteristics or mercury 

concentrations by seafood consumption. Geometric mean THg, MeHg, and UHg for persons 

reporting eating food in each food category were calculated for seafood consumers and non-

seafood consumers, separately. Wald tests from unadjusted regression models were used to 

determine if there was a significant difference in Hg among those reporting eating the 

specific food vs. not eating that food. Data are not shown when N for a specific food 

category is <10.

Adjusted linear regression models were constructed to determine the independent 

associations between specific food categories and each mercury species (THg, MeHg, UHg) 

within the population groups (the entire population, seafood consumers within past 30 days, 

non-seafood consumers within past 30 days). All models were adjusted for age, sex, 
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education, and race/ethnicity. Specific categories for food reported eaten within the past 24 

hours were selected because the category had exhibited a significant association with at least 

one mercury species in unadjusted analyses. Some food categories that were similar were 

further combined due to collinearity. Food groups used as model covariates were fish, 

shellfish, or mixed seafood dishes; beans, nuts, or soy (including milk substitutes); Asian 

foods; soup; mixed rice dishes; rice; red vegetables, leafy vegetables, or vegetable oil; beer; 

wine; and liquor. It is likely that some seafood might be a minor ingredient in some of these 

categories such as Asian foods, soups, or mixed rice dishes; this is discussed in more detail 

below. Regression coefficients (95% confidence intervals) are reported.

Code availability.

Code used in data analysis will be available as a Stata do-file on the EPA Science Hub 

website, https://catalog.data.gov/dataset/epa-sciencehub.

Results

Demographic characteristics among seafood consumers and non-seafood consumers are 

presented in Table 1. There was a significant difference in age between the two groups with 

non-seafood consumers tending to be younger. A higher proportion of seafood consumers 

had higher education (at least some college) versus non-seafood consumers; this was also 

statistically significant. There was no significant difference in sex or race/ethnicity between 

seafood consumers and non-seafood consumers.

Geometric mean mercury concentrations, stratified by seafood consumption, are presented in 

Table 2. Mercury concentrations were significantly higher among seafood consumers versus 

non-seafood consumers: for THg and MeHg, the geometric mean among seafood consumers 

was more than twice as large as that among non-seafood consumers. The ratio of 

MeHg/THg was also significantly higher among seafood consumers (0.808) versus non-

seafood consumers (0.631); overall the MeHg/THg ratio was 0.766 (95% confidence 

interval: 0.727, 0.805). An estimated 3.8% of seafood consumers had THg higher than 5.8 

μg/L; 9.4% had concentrations higher than 3.4 μg/L. In terms of the US population, this 

suggests roughly 7.7 million and 18.7 million persons have THg > 5.8 μg/L or > 3.4 μg/L, 

respectively. These percentages were similar, but slightly lower, for MeHg. Less than one 

percent of non-seafood consumers had blood mercury concentrations higher than these 

thresholds (Supplemental Table 2).

Geometric mean mercury concentrations for seafood consumers who reported eating specific 

foods within the past 24 hours are presented in Supplemental Table 3. For seafood 

consumers, substantially higher THg or MeHg concentrations were observed among those 

whose diet included fish or shellfish in the past 24 hours, Asian foods, rice, and alcoholic 

beverages. Higher UHg concentrations were observed among those who consumed fish, 

beans/nuts/soy, cooked grains and cereal, or wine. Corresponding data for non-seafood 

consumers are presented in Supplemental Table 4. For non-seafood consumers, somewhat 

higher THg or MeHg concentrations were observed among those who reported eating rice, 

vegetables, and substantially higher THg or MeHg among those consuming alcoholic 
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beverages. Higher UHg concentrations were observed among those whose diet included 

mixed dishes with rice, and vegetable oils.

Tables 3–5 present results from regression models predicting mercury biomarkers among 

seafood and non-seafood consumers. Supplemental Table 5 presents the difference in all of 

these regression models’ R2 between the full model R2 minus the R2 from a model without a 

specific dietary component. In adjusted regression models among seafood consumers, THg 

was associated with the majority of foods included in the model (Table 3). Consumption of 

fish or seafood, wine, soup, rice, and red vegetables/leafy vegetables/vegetable oil within the 

past 24 hours was associated with higher MeHg (Table 4). Consumption of fish or seafood 

as well as beans, nuts, or soy in the past 24 hours was associated with higher UHg (Table 5).

In adjusted regression models among non-seafood consumers, there was a significant 

association of consumption of mixed rice dishes, red vegetables/leafy vegetables/vegetable 

oil, and liquor within the past 24 hours with higher concentrations of whole blood total 

mercury; wine was approaching statistical significance (p=0.085) (Table 3). Consumption of 

wine within the past 24 hours was significantly associated with higher MeHg (Table 4). 

Consumption of mixed rice dishes within the past 24 hours was associated with higher UHg 

(Table 5).

Discussion

In this cross-sectional analysis of a representative sample of the United States population, 

we identified associations between multiple food categories with THg, MeHg, and UHg in 

seafood consumers and non-seafood consumers, after adjusting for age, sex, education and 

race/ethnicity. Overall, seafood consumers had significantly higher concentrations of THg, 

MeHg, and UHg compared to non-seafood consumers. In adjusted models among self-

reported non-seafood consumers, THg was associated with consumption of mixed rice 

dishes, red vegetables/leafy vegetables/vegetable oil, liquor within the past 24 hours; there 

was a borderline association with wine. Adjusted models among non-seafood consumers 

also found significant associations of MeHg with consumption of wine in the past 24 hours, 

and UHg with consumption of mixed rice dishes in the past 24 hours.

The association of mercury biomarkers with demographic variables in our adjusted models 

are largely consistent with previous reports. Consistent with our results, higher mercury 

biomarker concentrations have been associated with older age (49,50), higher education (51) 

and Asian race/ethnicity (51,52). Interestingly, in our analysis the association with Asian 

race/ethnicity is strongest among seafood-consumers; among non-seafood consumers, those 

of Hispanic or non-Hispanic black race/ethnicity have significant associations with THg and 

Hispanics have a significant association with UHg, whereas Asians who report being non-

seafood consumers do not. Prior studies have suggested that a high consumption rate of fish 

and seafood among those of Asian race/ethnicity may be a major driver of higher mercury 

concentrations among this group overall (53,54); although we saw no difference by race/

ethnicity in whether or not individuals reported eating fish or seafood within the past month, 

it is still likely that there are different patterns in the type and quantity of seafood consumed 

which could contribute to these differences in observed Hg biomarker concentrations. The 
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reason for the association of mercury biomarkers with non-seafood consuming non-Hispanic 

blacks and Hispanics is less clear. It is possible that these groups may be more likely to be 

exposed to mercury via non-dietary routes such as occupation, residence in environmentally 

contaminated areas, or use of mercury-containing cosmetics including skin-lightening 

creams (55).

In adjusted models, recent consumption of rice and/or mixed rice dishes was associated with 

THg and MeHg among seafood consumers and mixed rice dishes were associated with THg 

and UHg among non-seafood consumers. Numerous studies have been able to quantify 

mercury concentrations of concern in rice and rice-containing cereals (29,30,56–58). Several 

studies have also identified significant associations of rice with mercury biomarker 

concentrations or modeled mercury exposures in populations with substantial seafood 

consumption (33,59), although an analysis of the Korean Health and Nutrition Examination 

Survey did not observe an association between blood mercury and rice consumption (38). 

Additionally, a series of studies in China focus on regions with high rice but low seafood 

consumption. These also identified significant associations of rice with methylmercury 

biomarker concentrations (29,57) or used modeling to estimate a significant contribution to 

total dietary mercury (30,32). Of note is that a few of these studies are also located in areas 

near widespread environmental mercury contamination as a result of industrial or mining 

practices (30,32,57); this likely influences the extent to which rice contributes to total or 

methylmercury exposure in these populations.

Recent consumption of red vegetables, leafy vegetables, or vegetable oil was associated with 

higher THg among both seafood and non-seafood consumers and MeHg among seafood 

consumers, after adjustment for demographic variables. Several studies have suggested that 

leafy vegetables or other plants are able to uptake mercury as a result of local mercury 

contamination in soil (60–64), air (65,66), water (67,68); or from mercury-containing 

biosolids applied to soils (69–72). Epidemiology studies have also identified associations of 

vegetables with mercury biomarkers among populations living near areas with 

environmental mercury contamination (37,57), as well as populations in Korea (38) and 

Finland (35). Modeling studies in China have also suggested that leafy greens or vegetables 

may comprise a substantial contribution to overall dietary mercury exposure (73,74).

In our adjusted models, those who reported drinking wine or liquor in the past 24 hours had, 

on average, higher THg concentrations and those who reported drinking wine in the past 24 

hours had higher MeHg concentrations; in our study, these observations were observed for 

both seafood and non-seafood consumers. As results among non-seafood consumers are 

unlikely to be confounded by the presence of mercury in fish/seafood this highlights the 

potential importance of wine as a contributor to mercury exposure. Additionally, prior 

research has identified associations of wine consumption with mercury exposure among 

Finnish men (35), Viennese coronary artery disease patients (75), pregnant women from the 

United Kingdom (41), and Austrian women (76). Chung and colleagues used factor analysis 

to identify typical food consumption patterns among Koreans and found that the ‘alcohol 

and noodle’ dietary pattern was associated with higher blood mercury (77). While the above 

studies are similar to ours in identifying an association of wine consumption with mercury, 

the results from our study do appear to be stronger than in these prior reports. In our 
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regression models, the strength of the association (i.e., the beta coefficient) between wine 

consumption was larger than most other food categories, and similar in size to that observed 

for fish/shellfish and seafood (Tables 3, 4). Meanwhile, additional studies have quantified 

total mercury within wine (40,78–81). Taken together, more investigation into the potential 

contribution of wine to mercury exposure, particularly in the US population, may be 

warranted.

This analysis does have some limitations. First, both the 24-hour recall and dietary 

questionnaire data rely on participant recall, which can result in some inaccuracy. While this 

possibility cannot completely be ruled out, we think that any effect would be minimal as 

NHANES takes extensive steps to ensure dietary data accuracy; as shown through 

completion of periodic validation and crossover studies (82). Another limitation is that the 

24-hour dietary recall may not represent longer-term patterns in food consumption, which 

may result in some confounding of our results. However, this is somewhat offset by the large 

sample size available in NHANES, which increases that likelihood that even if some 

individuals may not have a representative diet in the past 24 hours, that the overall 

population mean will still be a reasonable representation of the population. We additionally 

have no reason to anticipate that there would be any association of recent versus typical food 

consumption patterns with mercury, so any misclassification would likely be nondifferential, 

resulting in a bias towards the null. At the same time, the prior 24-hours of food 

consumption is likely to be informative with regards to mercury content in blood and urine, 

as recent food consumption is likely to be strongly represented in these biological samples.

Another limitation is that, although NHANES collected highly detailed and specific dietary 

information on a large population, there are still a few specific food items which are difficult 

to isolate in statistical analyses. For example, several prior studies have suggested that 

mushroom consumption may be a contributor to dietary total or methylmercury exposure 

(37,40,70,83), but overall mushroom consumption in the typical US diet is incorporated into 

other categories (i.e., mixed dishes) so we could not evaluate this separately (see 

Supplemental Table 1). Additionally, there were a few food categories which we were 

unable to evaluate in multivariable models because either too few participants reported 

eating them in the past 24 hours (e.g., wine and liquor among non-seafood consumers with 

UHg, see Supplemental Table 4) or they were too highly correlated with other food items. 

For example, in unadjusted analyses consumption of vegetable oil appears to be highly 

correlated with UHg among non-seafood consumers; however, recent consumption of 

vegetable oil was highly correlated with consumption of leafy and other vegetables; thus, 

including them as separate items in regression models would likely have resulted in model 

collinearity. Our estimates are also somewhat limited by the fact that we evaluated food 

consumption as a binary variable (consumption vs. not) instead of incorporating data on the 

quantity of each food consumed. A final consideration is that it is possible that some 

individuals who report being non-seafood consumers might have some non-zero amount of 

seafood consumption, either through consuming seafood less frequently than on a monthly 

basis or via eating food items with “hidden” seafood ingredients. For example, Asian dishes 

or soups which do not have fish or shellfish as a main ingredient may still contain fish or 

oyster sauce as a minor ingredient. It is possible that this may have resulted in some 
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exposure misclassification with Asian foods, mixed rice dishes, or soups. Results for these 

categories should be interpreted accordingly.

There are also many strengths to this analysis. First, NHANES is a large, representative 

sample of the United States population. However, the benefit of the representative sampling 

may be somewhat diminished in this analysis as children and minorities were more likely to 

be excluded from analysis due to lack of mercury biomarker or dietary data. Another 

strength is that we were able to use multiple mercury biomarkers (THg in blood, MeHg in 

blood, and UHg) which represent different proportions of different mercury compounds. 

THg is dominated by organic mercury, mainly MeHg, whereas UHg has a high proportion of 

inorganic mercury (3). As noted above, the association patterns of dietary components with 

these three biomarkers differ, which could suggest potential differences in the source of 

mercury contamination.

Another substantial strength of this study is the highly detailed dietary information collected 

as part of this study. While we were not able to explore all potential foods of concern, as 

noted above, the large sample size and detailed data collected from the 24-hour dietary recall 

allowed sufficient power to investigate over 30 different food categories. Additionally, 

NHANES includes extensive questions about long-term dietary patterns, which allowed us 

to contrast results among seafood consumers and non-seafood consumers. It is possible that 

with any analysis of seafood consumers, even when controlling for fish/seafood 

consumption, that associations of non-seafood dietary components with mercury biomarkers 

may be a result of residual confounding from seafood consumption. This is because fish and 

seafood are unquestionably the predominant source of dietary mercury exposure and 

consumption of many types of food are highly correlated. Analyses within a non-seafood 

consuming population are much less likely to be influenced from residual confounding from 

seafood consumption, thus, associations observed within this subset are highly informative 

regarding non-seafood sources of dietary mercury exposure.

Taken together, this work supports and extends existing research that certain non-seafood 

dietary items such as vegetables, rice, and wine are associated with higher average 

concentrations of mercury biomarkers. A key strength of this analysis is that we use a large, 

representative sample of the United States, and demonstrate that the associations of mercury 

biomarkers with vegetable, rice, and wine intake are observed among both seafood 

consumers and non-seafood consumers. Although fish and seafood are unquestionably the 

source of the largest quantity of dietary mercury exposure, contributions from other sources 

should still be considered, especially among non-seafood- consuming populations.
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Refer to Web version on PubMed Central for supplementary material.
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Table 1:

Demographic characteristics stratified by seafood consumption

Variable Seafood consumers
a

Non-seafood consumers
b

p-value
c

Age

 1–19 years 18.2 (16.3, 20.4) 37.2 (35.2, 39.3)

<0.001
 20–39 years 27.3 (23.5, 31.5) 29.7 (24.6, 35.2)

 40–59 years 31.9 (29.0, 35.0) 22.1 (18.5, 26.3)

 ≥ 60 years 22.6 (20.0, 25.4) 11.0 (8.4, 14.3)

Sex

 Male 51.3 (49.8, 52.7) 49.5 (46.9, 52.2)
0.221

 Female 48.7 (47.3, 50.2) 50.5 (47.8, 53.1)

Race/ethnicity

 NH White 64.4 (56.2, 71.8) 66.4 (55.3, 75.9)

0.102

 NH Black 12.6 (8.4, 18.6) 9.5 (5.5, 16.1)

 Hispanic 15.5 (10.7, 21.9) 17.5 (11.5, 25.6)

 NH Asian 4.7 (3.4, 6.4) 3.2 (2.1, 4.8)

 Multiracial/other 2.9 (2.0, 4.1) 3.4 (2.2, 5.4)

Education

 <20 years old/missing 18.2 (16.3, 20.4) 37.2 (35.2, 39.3)

<0.001

 < High school 11.8 (9.3, 14.9) 13.6 (10.4, 17.6)

 High school 16.0 (13.4, 19.0) 14.9 (12.6, 17.6)

 Some college 26.5 (23.7, 29.5) 19.6 (17.0, 22.4)

 College degree 27.5 (23.0, 32.4) 14.6 (11.2, 19.0)

Values are population-weighted percent and 95% confidence intervals; seafood consumption is self-reported within the past 30 days or 24 hours. 
NH = Non-Hispanic.

a.
Sample N=5427;

b.
Sample N=1770;

c.
p<0.05 for differences by seafood consumption using Pearson’s Chi-squre test.
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Table 2.

Mercury concentration, stratified by seafood consumption

Variable Seafood consumers Non-seafood consumers
p-value

a

Whole blood total mercury

 N
b 5427 1770

 GM (95% CI), μg/L
c 0.89 (0.78, 1.02) 0.31 (0.28, 0.34) <0.001

 Percent (95% CI) >5.8 μg/L
c 3.84 (2.33, 6.28) 0.11 (0.01, 0.88) <0.001

 Percent (95% CI) >3.4 μg/L
c 9.40 (6.40, 13.62) 0.61 (0.23, 1.61) <0.001

Whole blood methylmercury

 N
b 5427 1770

 GM (95% CI), μg/L
c 0.67 (0.57, 0.80) 0.17 (0.16, 0.19) <0.001

 Percent (95% CI) >5.8 μg/L
c 3.73 (2.22, 6.19) 0.11 (0.01, 0.88) <0.001

 Percent (95% CI) >3.4 μg/L
c 9.35 (6.43, 13.41) 0.71 (0.30, 1.70) <0.001

Percent methylmercury/total mercury
d 80.8 (77.0, 84.6) 63.1 (58.7, 67.5) <0.001

Urinary total mercury

 N
b 1612 521

 GM (95% CI), μg/g creatinine
c 4.07 (3.66, 4.52) 2.59 (2.17, 3.08) <0.001

GM = geometric mean; 95% CI = 95% confidence interval.

a.
p-value based on Wald test from unadjusted regression model.

b.
Unweighted sample N.

c.
Population-weighted estimate.

d.
Whole blood methylmercury and total mercury; sample N=5427 in seafood consumers and N=1770 in nonseafood consumers.
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Table 3.

β (95% confidence interval) for adjusted linear models predicting whole blood total mercury (THg)
a

Variable Seafood consumers (N=5427)
b

Non-seafood consumers (N=1770)
c

Age, per 10 years 0.08 (0.05, 0.10)
d

0.05 (0.01, 0.09)
d

Male (vs. female) 0.09 (0.02, 0.17)
d 0.07 (−0.02, 0.16)

Education

 Child or missing data −0.17 (−0.31, −0.04)
d

−0.23 (−0.46, −0.01)
d

 Less than high school referent referent

 High school 0.14 (0.005, 0.27)
d −0.06 (−0.33, 0.21)

 Some college 0.20 (0.09, 0.31)
d 0.11 (−0.12, 0.35)

 4-year college degree 0.53 (0.39, 0.67)
d 0.02 (−0.21, 0.24)

Race/ethnicity

 Non-Hispanic white referent referent

 Non-Hispanic black 0.09 (−0.12, 0.30) 0.25 (0.08, 0.43)
d

 Hispanic 0.09 (−0.04, 0.21) 0.29 (0.003, 0.58)
d

 Non-Hispanic Asian 0.81 (0.64, 0.97)
d 0.19 (−0.10 0.48)

 Other or multiracial −0.08 (−0.32, 0.17) 0.11 (−0.15, 0.36)

Fish, shellfish or mixed seafood (vs. not) 0.47 (0.32, 0.61)
d --

Beans, nuts or soy (vs. not) 0.12 (0.03, 0.21)
d 0.01 (−0.08, 0.11)

Asian foods (vs. not) 0.17 (0.06, 0.27)
d 0.09 (−0.17, 0.35)

Soup (vs. not) 0.16 (0.07, 0.25)
d 0.02 (−0.19, 0.23)

Mixed rice dishes (vs. not) 0.14 (0.03, 0.26)
d

0.17 (0.01, 0.32)
d

Rice (vs. not) 0.15 (0.06, 0.24)
d 0.15 (−0.12, 0.42)

Red or leafy vegetables or oil (vs. not) 0.18 (0.09, 0.26)
d

0.15 (0.06, 0.23)
d

Beer (vs. not) 0.01 (−0.12, 0.14) 0.12 (−0.08, 0.33)

Wine (vs. not) 0.47 (0.35, 0.60)
d

0.47 (−0.07, 1.01)
e

Liquor (vs. not) 0.18 (0.03, 0.34)
d

0.32 (0.003, 0.63)
d

a.
The natural logarithm of whole blood total mercury (μg/L) is the dependent variable.

b.
Model covariates include age, sex, education, race/ethnicity, fish/shellfish/mixed seafood, beans/nuts/soy, Asian foods, soup, mixed rice dishes, 

rice, red vegetables/leafy vegetables/vegetable oil, beer, wine, and liquor.

c.
Model covariates include age, sex, education, race/ethnicity, beans/nuts/soy, Asian foods, soup, mixed rice dishes, rice, red vegetables/leafy 

vegetables/vegetable oil, beer, wine, and liquor.

d.
Wald test p<0.05.
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e.
Wald test p<0.10.
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Table 4.

β (95% confidence interval) for adjusted linear models predicting whole blood methylmercury (MeHg)
a

Variable Seafood consumers (N=5427)
b

Non-seafood consumers (N=1770)
c

Age, per 10 years 0.10 (0.05, 0.15)
d

0.02 (0.002, 0.04)
d

Male (vs. female) 0.37 (0.03, 0.70)
a 0.04 (−0.04, 0.12)

Education

 Child or missing data −0.02 (−0.29, 0.24) −0.08 (−0.13, −0.02)
d

 Less than high school referent referent

 High school 0.18 (−0.08, 0.45) −0.08 (−0.23, 0.07)

 Some college 0.22 (0.01, 0.44)
d −0.03 (−0.12, 0.05)

 4-year college degree 0.94 (0.41, 1.48)
d −0.09 (−0.20, 0.03)

Race/ethnicity

 Non-Hispanic white referent referent

 Non-Hispanic black 0.03 (−0.41, 0.46) 0.11 (0.03, 0.19)
d

 Hispanic 0.02 (−0.39, 0.42) 0.10 (−0.03, 0.23)

 Non-Hispanic Asian 1.71 (0.99, 2.43)
d

0.21 (0.03, 0.39)
d

 Other or multiracial −0.20 (−0.81, 0.41) −0.06 (−0.12, 0.01)
e

Fish, shellfish or mixed seafood (vs. not) 1.23 (0.50, 1.96)
d --

Beans, nuts or soy (vs. not) 0.07 (−0.17, 0.32) −0.01 (−0.08, 0.06)

Asian foods (vs. not) 0.23 (−0.22, 0.68) 0.06 (−0.06, 0.18)

Soup (vs. not) 0.42 (0.10, 0.73)
d 0.08 (−0.08, 0.24)

Mixed rice dishes (vs. not) 0.63 (−0.57, 1.84) 0.01 (−0.07, 0.08)

Rice (vs. not) 0.35 (0.05, 0.66)
d 0.11 (−0.03, 0.26)

Red or leafy vegetables or oil (vs. not) 0.43 (0.08, 0.78)
d 0.04 (−0.04, 0.12)

Beer (vs. not) −0.12 (−0.54, 0.30) 0.04 (−0.18, 0.27)

Wine (vs. not) 1.00 (0.57, 1.43)
d

0.84 (0.06, 1.62)
d

Liquor (vs. not) 0.20 (−0.32, 0.71) 0.36 (−0.10, 0.82)

a.
The natural logarithm of whole blood methylmercury (μg/L) is the dependent variable.

b.
Model covariates include age, sex, education, race/ethnicity, fish/shellfish/mixed seafood, beans/nuts/soy, Asian foods, soup, mixed rice dishes, 

rice, red vegetables/leafy vegetables/vegetable oil, beer, wine, and liquor.

c.
Model covariates include age, sex, education, race/ethnicity, beans/nuts/soy, Asian foods, soup, mixed rice dishes, rice, red vegetables/leafy 

vegetables/vegetable oil, beer, wine, and liquor.

d.
Wald test p<0.05.

e.
Wald test p<0.10.
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Table 5.

β (95% confidence interval) for adjusted linear models predicting urinary total mercury (UHg)
a

Variable Seafood consumers (N=1612)
b

Non-seafood consumers (N=521)
c

Age, per 10 years 0.11 (0.06, 0.16)
d 0.04 (−0.05, 0.12)

Male (vs. female) −0.23 (−0.40, −0.06)
d

−0.24 (−0.51, 0.03)
e

Education

 Child or missing data 0.31 (0.13, 0.50)
d 0.35 (−0.08, 0.79)

 Less than high school referent referent

 High school 0.21 (−0.08, 0.51) 0.31 (−0.08, 0.70)

 Some college 0.21 (0.04, 0.37)
d 0.38 (−0.09, 0.85)

 4-year college degree 0.34 (0.16, 0.53)
d

0.56 (0.13, 0.99)
d

Race/ethnicity

 Non-Hispanic white referent referent

 Non-Hispanic black −0.25 (−0.42, −0.08)
d −0.09 (−0.39, 0.21)

 Hispanic 0.12 (−0.05, 0.30) 0.21 (0.04, 0.39)
d

 Non-Hispanic Asian 0.36 (0.14, 0.59)
d −0.02 (−0.48, 0.43)

 Other or multiracial 0.32 (−0.10, 0.75) 0.06 (−0.28, 0.40)

Fish, shellfish or mixed seafood (vs. not) 0.24 (0.06, 0.43)
d --

Beans, nuts or soy (vs. not) 0.19 (0.07, 0.32)
d −0.02 (−0.38, 0.35)

Asian foods (vs. not) 0.13 (−0.10, 0.35) −0.16 (−0.66, 0.34)

Soup (vs. not) 0.06 (−0.13, 0.26) 0.02 (−0.31, 0.34)

Mixed rice dishes (vs. not) 0.08 (−0.18, 0.34) 0.65 (0.02, 1.27)
d

Rice (vs. not) −0.02 (−0.19, 0.15) 0.20 (−0.15, 0.55)

Red or leafy vegetables or oil (vs. not) 0.08 (−0.08, 0.25) −0.07 (−0.27, 0.12)

Beer (vs. not) −0.07 (−0.23, 0.09) −0.01 (−0.35, 0.34)

Wine (vs. not) 0.13 (−0.01, 0.41) −0.54 (−1.55, 0.47)

Liquor (vs. not) 0.08 (−0.19, 0.34) 0.50 (−0.37, 1.36)

a.
The natural logarithm of urinary total mercury (μg/g creatinine) is the dependent variable.

b.
Model covariates include age, sex, education, race/ethnicity, fish/shellfish/mixed seafood, beans/nuts/soy, Asian foods, soup, mixed rice dishes, 

rice, red vegetables/leafy vegetables/vegetable oil, beer, wine, and liquor.

c.
Model covariates include age, sex, education, race/ethnicity, beans/nuts/soy, Asian foods, soup, mixed rice dishes, rice, red vegetables/leafy 

vegetables/vegetable oil, beer, wine, and liquor.

d.
Wald test p<0.05.

e.
Wald test p<0.10.
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